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Abstract

Lateral tidal open boundary conditions which force tides in the internal region are estimated by an adjoint data

assimilation system which assimilates predicted coastal tidal elevations into a two-dimensional Princeton Ocean Model

for the East Coast of the United States. Control variables are the harmonic constants (amplitude and phase) of tidal

constituents ðM2; S2; N2; K1; O1Þ along the open boundary. The cost function is defined by the difference between

predicted and model-simulated tidal elevations at coastal tide gauge locations. The limited memory Broyden–Fletcher–

Goldfarb–Shanno quasi-Newton method for large-scale optimization is implemented to minimize the cost function.

Identical twin experiments are performed to verify the adjoint model and to examine sensitivity of model results to the

number and spatial distribution of tide gauge stations. The results from the predicted tidal elevation assimilation

experiments show that the simulated tidal elevations forced by the optimal open boundary conditions are more accurate

than those forced by the open boundary conditions derived from Schwiderski’s global tidal model. For M2 constituent,

the maximum RMS error at tide gauge stations with data assimilation is generally 14 cm and the minimum correlation

coefficient is 0.96. For the nine open coastal stations, the RMS errors are less than 5 cm: The results from the

experiment in which five tidal constituents are considered together show that the RMS errors at the nine open coastal

stations are less than 7 cm; and the correlation coefficients are greater than 0.99.
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1. Introduction

Open boundary conditions have critical impacts
for a regional tidal model. Solutions in model
interior are uniquely determined by the tidal open
boundary conditions. Traditionally, tidal open
boundary conditions can be obtained from either

available observations near the open boundaries
(tidal gauge data or satellite data), or from large-
scale numerical models such as Schwiderski’s global
tidal model (Schwiderski, 1980) and the TPX0.3
global tidal model (Egbert et al., 1994). Unfortu-
nately, observations at open waters are often scarce
and the global tidal model results are less accurate
in shallow waters. Therefore, determination of the
open boundary conditions might be a limiting
factor in developing a regional tidal simulation.
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Chen and Mellor (1999) determined optimal
tidal open boundary for a two-dimensional linear
Princeton Ocean Model (POM) by using tide
gauge data with a simple least squares scheme.
For their method, response functions which, in a
practical sense, represented complete information
on model solutions for arbitrary open boundary
forcing, had to be predetermined empirically.
Recently, the adjoint method has been widely
applied in parameter estimation by assimilating
observations into hydrodynamic models. Bennett
and McIntosh (1982) and Bennett (1985) used the
adjoint variational method to determine the open
boundary conditions in the tidal model and array
design by using constructed pseudo-observations.
Hall et al. (1982) and Cacuci (1988) used the
adjoint method to estimate the sensitivity of model
forecasts to changes in boundary conditions and
model parameters. Seiler (1993) performed a series
of identical twin assimilation experiments using
the adjoint method to estimate lateral open
boundary values of stream function and relative
vorticity for a quasi-geostrophic open-ocean mod-
el. Heemink et al. (2002) used adjoint approach for
the TRIWAQ three-dimensional shallow water
flow system to estimate the harmonic constants in
the open boundary conditions, the friction para-
meter, viscosity parameter and water depth by
assimilating tide gauge data as well as altimeter
data. They showed that the model results were
improved considerably.

The accuracy of altimeter data from satellite in
coastal region is still not as good as elevation from
tide gauges. Han et al. (2000) showed that the
model results of assimilating only tide gauge data
were better than that of assimilating both tide
gauge data and altimeter data for East China Sea.
Along the US east coast, reliable water-level time
series at many gauge stations last for several
decades, accurate harmonic constants of tidal
constituents are therefore available. So this study
is concentrated on estimating the optimal tidal
open boundary conditions by assimilating only
tide gauge data.

The nonlinear two-dimensional POM is used for
tidal simulation of the US East Coast. Harmonic
constants in the open boundary conditions are
used as the control variables. The adjoint model

was developed for calculating gradients of the cost
function with respect to the control variables. In
the US East Coast region the semi-diurnal con-
stituents M2; S2 and N2; and the diurnal consti-
tuents K1 and O1 account for more than 94% of
the tidal potential energy (M2 constituent is the
predominant constituent which itself accounts for
more than 80% of the tidal potential energy). Only
these five tidal constituents are therefore consid-
ered. The adjoint method of obtaining open
boundary conditions will be shown to greatly
improve the calculated tidal elevations over the
open boundary conditions based on Schwiderski’s
global tidal model.

2. Model description

2.1. Forward model

The two-dimensional POM (Blumberg and
Mellor, 1987) including all nonlinear terms was
used to simulate tides in the US East Coast region.
The same model grid and bathymetry as our
previous work (Zhang et al., 2002a) were used.
The governing equations are as follows:
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where h is elevation of free surface with respect to
mean sea level, U and V are vertically averaged
velocity components in x and y directions, D and
tx;y

b are water depth at rest and bottom friction,
g is the acceleration due to gravity, f is the
Coriolis parameter, r is the water density, and the
horizontal viscosity and diffusion terms Fx and Fy
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are defined as
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where AM ; the vertically integrated horizontal
eddy viscosity, is defined by the Smagorinsky
formulation

AM ¼ C Dx Dy
1

2
jrV þ ðrV ÞT j; ð6Þ

where C; a nondimensional parameter, is set to be
0.2 in this study; Dx and Dy are the grid spacings in
the x and y directions for each grid cell, and
curvature term is

*f ¼
VdxðDyÞ
Dx Dy

þ
UdyðDxÞ
Dx Dy

: ð7Þ

The quadratic law with bottom friction coefficient,
Cb; is used for bottom friction,
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At the open boundary (at j ¼ 1 in this study), tidal
elevations for each tidal constituent are prescribed
as

hiðtÞ ¼ gAi cosðot þ E �YiÞ i ¼ 10;y; 110 ð9Þ

in which i is index of the model grid along the open
boundary, g is node factor, Ai is mean amplitude,
Yi is epoch, o is angular speed and E is value of
equilibrium argument when t ¼ 0: Velocities are
specified with radiation open boundary formula-
tion.

2.2. Cost function and control variables

The National Ocean Service (NOS) of the US
National Oceanic and Atmospheric Administra-
tion (NOAA) has been maintaining more than 100
permanent operating water-level stations, called
the National Water Level Observation Network
(NWLON) (Fig. 1) along the US coast. The
accurate harmonic constants of tidal constituents
can be obtained from the long-term water-level
observations. Therefore, it is feasible to assimilate
tidal predicted elevations into a numerical model

using the optimal control data assimilation tech-
niques to determine a better tidal open boundary
conditions for a regional tidal model, and further
to improve coastal tidal simulation. Thus, this
study is concentrated on how well the simulated
tidal water levels could be improved by assimilat-
ing tide gauge water-level data. The cost function
is defined as

J ¼
1

2

Z Z Z
xyt

ðhm � h0Þ
2 dx dy dt; ð10Þ

where hm and h0 are model simulated and
predicted tidal elevations, respectively. This cost
function measures the distance between model
simulated and tidal predicted elevations.

In a time-dependent open domain tidal model,
several parameters, such as bottom frictional
coefficients, bathymetry, initial conditions and
open boundary conditions, could be adjusted to
fit the model results to the observations. In the
present study, only elevations at the open bound-
ary model grids are used as control variables. This
assumes that errors of the simulated elevations are
caused by the errors in the elevations along the
open boundary that propagated over the interior
of the model domain. For each individual tidal
constituent, elevation values along the open
boundary can be calculated with Eq. (9) if the
tidal harmonic constants (amplitude, A and phase,
Y) are determined. In order to reduce the number
of control variables, A and Y of each tidal
constituent at a given open boundary grid are
taken as a quadratic polynomial (based on the
results of Schwiderski’s global tidal model at the
open boundary),

Ai ¼ a1f1 þ a2f2i þ a3f3i2; ð11Þ

Yi ¼ a4f4 þ a5f5i þ a6f6i
2; ð12Þ

where Ai and Yi are amplitude (in meters) and
phase (in degrees) of a tidal constituent at open
boundary grid, i is index of the model grid along
the open boundary, a1–a6 are the coefficients of
the quadratic polynomials and used as real control
variables (six control variables for each tidal
constituent). Because of the physical nature of
these control variables (different unit and magni-
tude), the parameters are therefore scaled with the
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scale factors, f1–f6 (Table 1) so that all control
variables have the same order in magnitude and
similar weight during the optimization. This

avoids ill-conditioning of the Hessian matrix
which is used in minimization algorithms such as
the quasi-Newton method.

2.3. Adjoint equations

In this study, discrete adjoint equations were
directly constructed from the discrete nonlinear
two-dimensional POM forward equations (Zhang
et al., 2002b). For clarity, construction of the
adjoint equations is briefly summarized in con-
tinuous notation in this paper. Augmented La-
grange function is formulated by introducing
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Fig. 1. Locations of 21 tide gauge stations from National Water Level Observation Network (NWLON) that are used in this study.

Table 1

Scale factors for the amplitude and phase of the five major tidal

constituents

Constituent f1 f2 f3 f4 f5 f6

M2 1 10�2 10�4 102 1 10�3

S2 10�1 10�3 10�5 102 1 10�3

N2 10�1 10�3 10�5 103 1 10�2

K1 10�1 10�3 10�5 103 1 10�3

O1 10�1 10�5 10�5 103 1 10�4

A. Zhang et al. / Continental Shelf Research 23 (2003) 1055–10701058



Lagrangian multipliers lh; lu and lv for the
constraint equations and open boundary condi-
tions (Lawson et al., 1995). The first-order
variational of the cost function was written as
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The corresponding adjoint variables are defined as
follows: lh is the adjoint variable of h; lu is the
adjoint variable of U ; and lv is the adjoint variable
of V ; respectively. After applying the chain rule,
integrating by parts and regrouping, Eq. (13) is
rewritten as

By forcing the coefficients of the noncontrol
variables (dh; dU and dV ) of Eq. (14) in interior
of the model domain to zero, the corresponding
adjoint equations are as follows:
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the variational of the cost function can be written
as

dJ ¼
Z Z

x;t
lhdhj¼1ðtÞ dx dt: ð18Þ

If only one tidal constituent is used as open
boundary forcing, substitute Eqs. (9), (11) and (12)
into Eq. (18), the gradients of the cost function
with respect to the control variables are repre-
sented as
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Eq. (19) can be applied to every tidal constituent
ðM2; S2; N2; K1; O1Þ: The total number of the
control variable is determined by how many tidal
constituents are prescribed on the open boundary.

3. Assimilation experiments

The procedure of an iterative optimal data
assimilation that is applied to all the following
data assimilation experiments is described as:

(i) Run forward numerical model for 30 days
(which is called data assimilation window)
with initial values of the control variables,
and save the simulated elevations at the

corresponding tidal gauge locations at every
hour.

(ii) Calculate data misfits between the simulated
results ðhmÞ and the predicted tidal elevations
ðh0Þ at locations where data exist and save
them into a temporary file. Calculate values of
the cost function with Eq. (10).

(iii) Run adjoint model backwards in time forced
by the data misfits to calculate the adjoint
variables. Then calculate the gradient of the
cost function with respect to the control
variables using the adjoint variables.

(iv) Employ the limited memory BGFS quasi-
Newton minimization algorithm (Liu and
Nocedal, 1989) to update optimal control
variable estimates.

(v) Check whether the convergence criterion,
jGjoe or Joe (J and G are values of the cost
function and its gradient with respect to the
control variables, e ¼ 10�6), for the minimiza-
tion process is satisfied. If Yes, iteration is
stopped. Otherwise, steps (i)–(v) are repeated
with the new parameter estimates.

(vi) Run forward numerical model with the final
optimal open boundary conditions.

3.1. Identical twin experiments

Identical twin experiment techniques are the
most useful tools to verify and evaluate the
performance and feasibility of the adjoint data
assimilation procedure. In an identical twin
experiment, pseudo-observations are generated
by the numerical model with a set of predeter-
mined control variables so that the observations
are (by definition) not contaminated by any error
and contain the same dynamics as the numerical
model. All kinds of pseudo-observations (current
and elevation) may be sampled at any grid point
and any time step. Another merit of the identical
twin experiment is that since the true values of
control variables are known, one can therefore test
whether or not the calculated values of the optimal
control variables converge to their true values.
Thus, the identical twin experiment is widely used
to evaluate and verify the performance of devel-
oped adjoint data assimilation systems. Here the
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M2 tidal constituent is used as an example for the
identical twin experiments in which elevations of
M2 constituent are calculated from the predeter-
mined control variables and are prescribed along
the open boundary. The tidal model is integrated

with the predetermined values of a1–a6 (called
‘‘true’’ values of the control variables) for at least
60 days (the data of the first 30 days of spinup are
not used). The simulated elevations at 21 grid
locations that coincide with NOS’s tide gauge
locations are saved hourly and used as the pseudo-
observations in the data assimilation process.

The first identical twin experiment was con-
ducted with the initial values of the control
variables obtained by adding 0.5 to their true
values. Fig. 2 shows the values of the cost function
and the norm of its gradients versus the number of
iterations in an optimization process (all values are
normalized by their own initial values J0 and G0).
We can see that the cost function and the norm of
the gradient drop rapidly in the first several
iterations, and the convergence criterion is satisfied
after 43 iterations. The relative values of the cost
function ðJ=J0Þ decrease from 1 to 10�7:

The final value of the norm of the gradient is
less than 10�6: The optimal amplitudes and phases
of the M2 constituent along the open boundary
(Fig. 3) converge closely to their true values from
the initial values. The RMS errors between the
true and optimal elevations for 30 days at the open
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Fig. 2. Values of gradient norm and cost function versus

iteration number for the twin experiment ðM2Þ: Solid line,

G=G0; dotted line, J=J0:

Fig. 3. True, initial and computed (optimal) amplitudes and phases along the open boundary for the twin experiment for M2:
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boundary are calculated and presented in Fig. 4. It
is shown that, although the optimal amplitude and
phase are not exactly coincident with the true
values, the RMS errors in the water levels are less
than 1 cm and the correlation coefficients are
greater than 0.999. Another experiment with zeros
as initial values of the control variables was
conducted to test the sensitivity of the perfor-
mance of the optimization procedure to the initial
values. Similar results as the previous experiment
were obtained. This shows that the optimization
procedure is independent of the choice of the
initial guess. However, the initial guess must be
meaningful and allow the model to run reason-
ably. A good initial guess may reduce the iteration
number of the optimization process, so the initial
values of the control variables should be as close to
the true solution as possible.

A series of experiments, in which the number of
tide gauges used in data assimilation is reduced
step by step, are now discussed to investigate the
effect of the amount of observations on the
optimization procedure. We start with all 21 gauge
stations (denoted by Sta21) in which the pseudo-
observations from the 21 tide gauge stations are

assimilated. In the next experiment, the nine tide
gauge stations which are located at open coast are
selected from Sta21 (the station numbers are 5, 9,
10, 12, 15, 16, 18, 20 and 21) and the pseudo-
observations at these nine tide gauge stations are
assimilated (Sta9). In Sta6, six stations are selected
from the stations used in experiment Sta9 (the
station numbers are 5, 9, 10, 15, 16 and 20). The
first guess of each control variable is the same in all
experiments (increased by 0.5 on its own true
value). Optimal values of the control variables for
the three experiments are listed in Table 2 and the
optimal harmonic constants for the M2 (amplitude
and phase) along the open boundary derived from
the optimal values of the control variables for the
above three experiments are presented in Fig. 5.
The figure shows that the optimal control para-
meters are not exactly equal to the true values for
the three experiments and that there are minimal
differences between them. The optimal control
variables from Sta9 are very close to those from
Sta21 (the difference of each control variable is less
than 0.004). The optimal amplitudes and phases
along the open boundary derived by the optimal
control variables from Sta21 and Sta9 are almost
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Fig. 4. Correlation coefficients and RMS errors (centimeters) between the true open boundary elevations and the optimal open

boundary elevations.
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coincident and are the closest to the true values
among all the experiments. The simulated eleva-
tions at the tidal gauge stations from these
experiments are all very close to the pseudo-
observations (the RMS errors at 21 tidal stations
for the three experiments are less than 0:1 cm).
This demonstrates that the true open boundary
elevations can be recovered by assimilating tidal
elevations at coastal stations. It is noted (Table 2)
that the parameter a6 did not converge to its true
value from the initial value for all these experi-
ments (keep its initial value). The reason might be
that the true phase solution looks much like a

linear function of i; so the model simulations are
not sensitive to a6: It makes little sense to try to
determine this parameter, the parameter a6 can be
specified as a constant or is discarded in data
assimilation procedure.

In order to investigate the effect of the distribu-
tion of assimilated data stations on the optimiza-
tion procedure, two other experiments have been
performed: Sta9 2 and Sta6 2. In Sta9 2 experi-
ment, the data from the nine tide gauge stations of
4, 6, 7, 8, 11, 13, 14, 17, 19 (which are located
inside of bays and not used in the experiment Sta9)
are assimilated. In Sta6 2 experiment, to test the
influence of northern locations, data from six
consecutive stations between Montauk and Lewes
(station numbers from 7 to 12) are assimilated.
The resulting optimal amplitude and phase at the
open boundary are also plotted in Fig. 5. The
optimal amplitude and phase at the open bound-
ary from Sta9 2 deviated farther away from the
true values even than that of Sta6. This shows that
the data from inside bays or inside rivers may
include some signals that cannot be produced by
the open boundary tidal forcing. Thus, the real
open boundary conditions may not be obtained by
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Table 2

Optimal coefficients of the quadratic polynomials of amplitude

and phase of M2 constituent for the twin identical experiments

a1 a2 a3 a4 a5 a6

True 0.4213 �0.2759 0.2769 0.6688 �0.3929 0.9759

Initial 0.9213 0.2241 0.7769 1.1688 0.1071 1.4759

Sta21 0.4187 �0.2695 0.2764 0.6771 �0.4339 1.4349

Sta9 0.4189 �0.2699 0.2767 0.6768 �0.4386 1.4370

Sta6 0.4131 �0.2377 0.2446 0.6734 �0.4305 1.4421

Sta9 2 0.4096 �0.2160 0.2221 0.6703 �0.4240 1.4430

Sta6 2 0.4076 �0.2313 0.2453 0.6794 �0.4423 1.4272

Fig. 5. True and optimal amplitudes (meters) and phases (degrees relative to GMT) at the open boundary from different twin

experiments ðM2Þ: Increasing index is from south to north (see Fig. 1).
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assimilating the data from inside shallow bays. In
Sta6 2, the data from some of the northern six
stations of Sta21 are used. The optimal amplitudes
and phases at the northeastern part of the open
boundary are the closest to the true values among
the results of all twin experiments. However, the
worst results are obtained for the southern part of
the open boundary, indicating that the true open
boundary at the southern region might not be
accurately recovered when only using tide gauge
stations from the northern region.

3.2. Practical application

3.2.1. Experimental methodology

Two practical application experiments denoted
as the individual tidal constituent estimation
(PA ITC) and the combined tidal constituents
estimation (PA CTC) were performed. For the
first (PA ITC), the same data assimilation proce-
dure as that of the identical twin experiment Sta9
is individually applied for each of the five tidal
constituents to obtain their optimal harmonic
constants. It is noted that five control variables
in total were used for each constituent within each
data assimilation process based on the results of
the identical twin experiments (model simulation is
not sensitive to a6). The optimal harmonic con-
stants of these five tidal constituents from the
separate data assimilation processes are then
combined and used as the lateral open boundary
conditions for a new simulation run. For PA CTC,
the harmonic constants of the five tidal constitu-
ents are estimated in a single data assimilation
process (25 control variables in total). Thus the
interaction effects of the tidal constituents are
included while the tides propagate into shallow
coastal region where nonlinear effects begin to
become important. The twin experiments showed
that the experiment Sta9 in which the data from
the nine coastal stations were assimilated achieved
almost the same results as the experiment Sta21.
Since topography and geometry inside bays or
rivers cannot be well resolved by the present model
grid resolution, this may cause the model results at
grid points inside shallow bays not to match the
corresponding observations well. Therefore, tidal
predicted elevations (calculated by using the

harmonic constants of the corresponding NOS-
accepted constituents) from the nine stations of
Sta9 are used in the data assimilation process, and
the elevations from the other stations are used for
comparison. Since the harmonic constants from
Schwiderski’s global tide model and the global
tidal inverse model of Oregon State University are
very similar along the open boundary, the
harmonic constants of each tidal constituent from
Schwiderski’s global tide model are interpolated
along the open boundary and then used as initial
values for the control variables.

3.2.2. Results

Optimal control variables: The resulting optimal
quadratic polynomial coefficients of the amplitude
and phase from experiment PA ITC are listed in
Table 3. The optimal harmonic constants (ampli-
tude and phase) of these five major tidal constitu-
ents along the open boundary are compared with
the initial values from Schwiderski’s global tide
model in Fig. 6. It can be seen that the optimal
amplitudes of the M2; S2; K1 and O1 constituents
along the open boundary from the two data
assimilation experiments PA CTC and PA ITC
are close (the differences are generally less than
2 cm for M2; and 0:3 cm for S2; K1 and O1), but
PA CTC is about 2 cm greater than PA ITC for
N2: The curve shapes of the optimal amplitudes of
M2; S2 are similar to those of Schwiderski’s global
tide model results. The optimal phases of M2 from
the two experiments are very close (less then 2	)
and smaller than those of Schwiderski’s global tide
model from 5	 at southwest to 20	 at northeast.
The differences in the optimal phases of S2 and N2
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Table 3

Optimal quadratic polynomial coefficients for the amplitude

and phase of the five major tidal constituents from experiment

PA ITC

Constituent a1 a2 a3 a4 a5

M2 0.409 �0.301 0.332 0.123 �0:385
S2 0.601 �0.384 0.889 0.321 �0:279
N2 0.819 �0.585 0.546 0.341 �0:230
K1 0.870 �0.202 0.060 0.206 �0:274
O1 0.568 0.726 �0.217 0.230 �0:442
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between the two experiments PA ITC and
PA CTC are generally 10	; and they are smaller
than those of Schwiderski’s global tide model
results. The differences in the optimal phases of O1

from the two experiments are less than 2	; and
they are generally 10	 greater than those of
Schwiderski’s model results.

Correlation coefficients and RMS errors: RMS
errors and correlation coefficients between the
tidal predictions and the simulated elevations are
plotted in Fig. 7. The RMS errors with the open

boundary conditions from Schwiderski’s tidal
model are generally smaller than 15 cm at the
coastal tide gauge locations, while the correlation
coefficients are greater than 0.9. It may show that
the Schwiderski’s tidal model results in deep
waters can be generally used as open boundary
conditions for a regional tidal model (as expected
for a regional ocean model). For the data
assimilation experiments PA ITC and PA CTC,
both the RMS errors and correlation coefficients
are close (the differences less than 2 cm and 0.01,
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Fig. 6. Amplitudes (centimeters) and phases (degrees relative to GMT) from Schwiderski global tide model and the optimal data

assimilation experiments. Solid line, from Schwiderski global model; dashed line with plus, from PA ITC; dotted line, from PA CTC.
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respectively). The maximum RMS error is 30 cm
at Eastport, and the minimum correlation coeffi-
cient is 0.96 at Mayport. The RMS errors are less
than 5 cm and the correlation coefficients are
greater than 0.99 for the nine coastal stations used
in the data assimilation procedure. For most of the
stations, the RMS errors with the optimal
boundary conditions are smaller than those with
the open boundary conditions from Schwiderski’s
model results and correlation coefficients are
greater. At Mayport and Gloucester, RMS errors
with the open boundary conditions from Schwi-
derski’s model results are smaller and the correla-
tion coefficients are greater. The assimilation
model does worse at tide gauges inside a bay, with

the RMS errors growing as one goes further up the
bay. For example, the RMS error grows as one
moves up Long Island Sound, from Montauk to
New London to Bridgeport. The RMS error also
grows as one moves up the Golf of Maine, from
Boston to Portland to Eastport. Here the error
becomes quite large because no other tide gauge
stations were used for the Gulf of Maine in the
assimilation, especially from the bay of Fundy
area with its huge tidal ranges. Other inside
stations (Newport, Gloucester, Springmaid Pier,
and Mayport) also have larger errors than nearly
coastal stations.

Time series and cotidal charts: Comparison
between the time series of the simulated elevations

ARTICLE IN PRESS

Fig. 7. RMS errors and correlation coefficients between the tidal predictions and model results with open boundary conditions from

Schwiderski global tide model and the optimal data assimilation experiments. Solid line with circle, Schwiderski global model; dashed

line with triangle up, from PA ITC; dashed line with diamond, from PA CTC. The asterisk beside the station name indicates that the

data from that station were used in assimilation.
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from PA ITC and PA CTC at costal locations
shows that there are no significant differences
between them (RMS difference is generally less
than 2 cm). Although there are some differences
among the optimal amplitudes and phases for each
tidal constituent along the open boundary of the
two experiments, the combined optimal open
boundary elevations for these two experiments
are almost the same. The simulated elevations
forced by the optimal open boundary conditions
from these two experiments are therefore coin-
cident. However, PA CTC simulations are less
computationally expensive than PA ITC (compu-
tational time was reduced by 70%). Time series of
tidal predictions and model results from the
experiments with the open boundary conditions
from PA CTC and Schwiderski global tidal model
are plotted in Fig. 8. They show that the model
simulated elevations with open boundary condi-
tions from Schwiderski tidal model are generally
close to the tidal predictions (the RMS errors are
less than 15 cm; except at Eastport, Newport,
Willets Point and Springmaid), but the phases of
the model results are generally delayed. The
simulated elevations with the optimal open
boundary conditions match the tidal predictions
better than those with the open boundary condi-
tions from Schwiderski tidal model.

Coamplitudes and cophases of the five consti-
tuents were calculated by analyzing 1-year simu-
lated elevations from experiment PA CTC using a
least squares method and presented in Fig. 9 (O1 is
not shown since it has a pattern similar to that of
K1). For the semi-diurnal constituents M2; S2 and
N2; the amplitudes in the deep waters increase
from southwest to northeast. The amplitudes of
M2 are less than 1 m except inside of the Gulf of
Maine where amplitudes exceed 2 m; and the
amplitudes of S2 and N2 are generally in the range
of 8–20 cm except inside of the Gulf of Maine
where they exceed 20 cm: The phases of M2 and
N2 in the deep waters are generally consistent from
south to north, while the phases of S2 in the deep
waters increase from south to north. The diurnal
K1 and O1 have similar amplitude and phase
patterns. Amplitudes are generally not more than
10 cm and phases decrease from south to north.
The computed and the corresponding NOS-

ARTICLE IN PRESS

Fig. 8. Tidal predictions (solid line) compared to model results

with open boundary conditions from Schwiderski tide model

(dot-dashed line) and the data assimilation experiment

PA CTC (dotted thick line).
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analyzed tidal harmonic constants at 18 tide gauge
stations (listed in Table 4) show that, for the M2

constituent, the maximum amplitude error is 8 cm
(at New London station), and the amplitude errors

are less than 5 cm at the open coast stations.
The maximum phase error is 10	 (at Sandy Hook).
The maximum amplitude differences for the
S2; N2; K1 and O1 constituents are 3.1, 3.4, 5

ARTICLE IN PRESS

Fig. 9. Cotidal charts of M2; S2; N2; K1 constituents based on the model results of PA CTC (with optimal tidal open boundary

conditions). Solid line, coamplitudes (in centimeters); dotted line, cophases (in degrees relative to GMT).
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and 4 cm while the maximum phase differences are
28	; 18	; 17	 and 23	:

4. Summary

An adjoint data assimilation model was devel-
oped using tidal harmonic constants (amplitude
and phase) along the open boundary as control
variables and defining the cost function by the
tidal elevation misfits at selected tide gauge
stations. The number of control variables was
reduced by approximating the harmonic constants
at the open boundary with a quadratic polynomial
formulation.

Identical twin experiments were performed to
verify and evaluate the performance and feasibility
of the adjoint data assimilation procedure. The
results showed that the true open boundary
conditions were well recovered by assimilating

ideal pseudo-observations from several coastal
stations. Better results were obtained by assimilat-
ing the data from open coast stations than from
those located inside shallow bays or shallow rivers.
Also, the more uniform the spatial distribution of
the stations, the better the optimal open boundary
conditions that were obtained. The optimization
procedure is independent of the choice of the
initial guesses of the control variables.

The experiments of real tidal data assimilation,
the tidal predicted elevations at nine coastal
stations were assimilated into the numerical model
and the harmonic constants from Schwiderski
global tidal model were used as initial guesses of
the control variables. Using data assimilation to
compute the optimal tidal forcing along the open
boundary led to better results than using the tidal
open boundary conditions from Schwiderski
global model. In this case, RMS errors between
the tidal predictions and model results with the
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Table 4

Comparison of NOS-analyzed and computed (PA CTC) harmonic constants (amplitude A; in centimeters and local phase, y; in degrees

relative to GMT) of M2; S2; N2; K1; O1 at 21 tide gauge locations

Station M2 S2 N2 K1 O1

Obs. MODEL Obs. MODEL Obs. MODEL Obs. MODEL Obs. MODEL

A y A y A y A y A y A y A y A y A y A y

Eastport 268.7 98 229.0 98 42.9 138 35.1 136 56.2 68 46.4 66 15.4 196 10.9 184 11.8 177 8.4 184

Portland 136.5 102 147.8 100 21.3 138 22.9 139 31.3 72 31.6 70 14.0 201 10.0 193 11.3 182 3.7 320

Boston 139.5 109 141.5 108 22.0 146 20.6 151 30.7 77 30.3 79 15.0 205 10.0 197 11.9 186 7.9 193

Newport 52.9 1 58.5 1 12.3 23 10.1 34 12.7 344 14.4 348 6.4 168 8.5 169 5.1 198 6.3 175

Montauk 29.6 47 33.5 44 6.5 58 5.4 60 7.9 23 8.6 15 7.3 179 8.0 186 5.1 207 5.9 188

New London 36.6 58 44.7 53 7.2 69 6.7 73 8.9 34 10.2 25 7.5 179 8.4 187 5.2 203 6.2 190

Bridgeport 98.5 108 90.2 105 16.6 134 13.2 135 21.5 86 18.1 78 9.1 191 10.1 204 6.6 218 7.3 206

Willets Point 113.5 116 115.6 116 18.6 141 17.3 148 23.0 91 23.2 91 9.8 192 11.0 209 6.4 229 7.8 210

Sandy Hook 69.3 7 68.5 17 13.7 35 11.5 44 15.7 350 16.5 357 10.5 175 9.8 181 5.4 171 7.5 180

Atlantic City 60.1 356 58.9 1 11.9 20 9.8 33 14.0 336 14.4 347 11.2 181 9.3 177 7.7 167 7.3 179

Cape May 72.2 28 68.0 27 12.7 56 10.8 55 15.8 9 15.6 7 10.9 199 9.6 185 8.3 185 7.3 186

Lewes 61.5 31 63.9 31 10.9 56 10.1 58 13.2 8 14.8 10 10.4 202 9.4 187 8.7 189 7.2 189

CBBT 39.4 21 39.1 27 7.4 47 6.6 49 8.9 2 10.0 9 5.9 186 10.4 188 4.7 206 7.7 189

Duck 49.1 359 47.4 6 9.3 23 7.6 28 11.5 338 11.6 345 9.2 175 9.2 177 6.1 190 7.1 180

Cape Hatteras 45.3 353 45.8 1 8.2 16 7.1 21 10.6 331 11.1 343 9.4 185 9.8 180 7.5 186 6.6 196

Springmaid 75.1 357 78.1 359 13.6 21 11.4 17 17.4 340 17.4 345 10.3 189 10.5 188 7.7 193 8.0 196

Charleston 75.8 17 79.8 14 13.1 39 10.9 36 16.7 359 16.5 6 10.4 202 10.5 199 7.8 205 7.6 208

Mayport 66.2 28 69.9 7 11.1 52 10.9 24 14.9 10 14.0 352 8.2 204 9.8 196 6.0 212 6.8 205

St. Augustine 66.2 14 66.1 7 11.2 36 10.2 23 16.3 355 13.1 352 10.1 197 9.6 196 7.3 202 6.6 205

Trident 51.7 7 53.7 6 8.1 28 8.5 19 11.9 348 11.1 351 10.1 202 8.9 197 7.7 205 5.9 206
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optimal open boundary conditions are generally
less than 15 cm for all 21 tidal stations and less
than 5 cm for the nine coast stations from which
the data were used in assimilation. The correlation
coefficients between tidal predictions and model
results with the optimal open boundary conditions
are greater than 0.96. Comparison between the
results from the experiment PA CTC, in which five
tidal constituents were considered together, and
from the experiment, PA ITC, in which five tidal
constituents were individually considered, showed
that the optimal amplitude and phase of each of
the five tidal constituents at the open boundary
from the two experiments are not exactly same,
but the optimal amplitudes and phases of the
predominate M2 constituent are very close. The
optimal open boundary elevations obtained from
the two experiments are therefore almost the same
(the average difference for 30 day period is less
than 0:1 cm), which, in turn, leads to the result
that the RMS errors and correlation coefficients of
these two experiments at the 21 tidal stations are
very close. However, the experiment PA CTC is
much more efficient than PA ITC.

In the present study, only open tidal boundary
conditions were treated as control variables and
tidal predicted elevations were assimilated. Thus,
only the errors of the simulated elevations caused
by inaccurate open boundary conditions were
corrected. However, for total water level-simula-
tions, there may be errors produced by other
effects. For the purpose of a real-time water level
nowcast/forecast, the accuracy of total water-level
should be improved by adjusting surface wind
forcing and other parameters.
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